Load-dependent destabilization of the γ-rotor shaft in FOF1 ATP synthase revealed by hydrogen/deuterium-exchange mass spectrometry.

نویسندگان

  • Siavash Vahidi
  • Yumin Bi
  • Stanley D Dunn
  • Lars Konermann
چکیده

FoF1 is a membrane-bound molecular motor that uses proton-motive force (PMF) to drive the synthesis of ATP from ADP and Pi. Reverse operation generates PMF via ATP hydrolysis. Catalysis in either direction involves rotation of the γε shaft that connects the α3β3 head and the membrane-anchored cn ring. X-ray crystallography and other techniques have provided insights into the structure and function of FoF1 subcomplexes. However, interrogating the conformational dynamics of intact membrane-bound FoF1 during rotational catalysis has proven to be difficult. Here, we use hydrogen/deuterium exchange mass spectrometry to probe the inner workings of FoF1 in its natural membrane-bound state. A pronounced destabilization of the γ C-terminal helix during hydrolysis-driven rotation was observed. This behavior is attributed to torsional stress in γ, arising from γ⋅⋅⋅α3β3 interactions that cause resistance during γ rotation within the apical bearing. Intriguingly, we find that destabilization of γ occurs only when FoF1 operates against a PMF-induced torque; the effect disappears when PMF is eliminated by an uncoupler. This behavior resembles the properties of automotive engines, where bearings inflict greater forces on the crankshaft when operated under load than during idling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect chemomechanical coupling of FoF1-ATP synthase.

FoF1-ATP synthase (FoF1) couples H+ flow in Fo domain and ATP synthesis/hydrolysis in F1 domain through rotation of the central rotor shaft, and the H+/ATP ratio is crucial to understand the coupling mechanism and energy yield in cells. Although H+/ATP ratio of the perfectly coupling enzyme can be predicted from the copy number of catalytic β subunits and that of H+ binding c subunits as c/β, t...

متن کامل

Monitoring transient elastic energy storage within the rotary motors of single FoF1-ATP synthase by DCO-ALEX FRET

The enzyme FoF1-ATP synthase provides the 'chemical energy currency' adenosine triphosphate (ATP) for living cells. Catalysis is driven by mechanochemical coupling of subunit rotation within the enzyme with conformational changes in the three ATP binding sites. Proton translocation through the membrane-bound Fo part of ATP synthase powers a 10step rotary motion of the ring of c subunits. This r...

متن کامل

Local stability of Rhodobacter capsulatus cytochrome c2 probed by solution phase hydrogen/deuterium exchange and mass spectrometry.

The hydrogen/deuterium exchange kinetics of Rhodobacter capsulatus cytochrome c2 have been determined using mass spectrometry. As expected, the relative domain stability was generally similar to that of the cytochrome c2 structural homolog, horse heart cytochrome c, but we were able to find evidence to support the presence of a second, small beta-sheet not found in the horse cytochrome, which s...

متن کامل

Regulatory conformational changes of the epsilon subunit in single FRET-labeled FoF1-ATP synthase

Subunit ε is an intrinsic regulator of the bacterial FoF1-ATP synthase, the ubiquitous membrane-embedded enzyme that utilizes a proton motive force in most organisms to synthesize adenosine triphosphate (ATP). The C-terminal domain of ε can extend into the central cavity formed by the α and β subunits, as revealed by the recent X-ray structure of the F1 portion of the Escherichia coli enzyme. T...

متن کامل

Single molecule thermodynamics of ATP synthesis by F1-ATPase

FoF1-ATP synthase is a factory for synthesizing ATP in virtually all cells. Its core machinery is the subcomplex F1-motor (F1-ATPase) and performs the reversible mechanochemical coupling. Isolated F1-motor hydrolyzes ATP, which is accompanied by unidirectional rotation of its central γ-shaft. When a strong opposing torque is imposed, the γ-shaft rotates in the opposite direction and drives the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 9  شماره 

صفحات  -

تاریخ انتشار 2016